Problem F: 走迷宫

Memory Limit:128 MB Time Limit:1.000 S
Judge Style:Text Compare Creator:
Submit:1 Solved:1

Description

    有一个n*m格的迷宫(表示有n行、m列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这n*m个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。
请统一用 左上右下的顺序拓展,也就是 (0,-1),(-1,0),(0,1),(1,0)

Input

第一行是两个数n,m( 1 < n , m < 15 ),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。 

Output

所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“->”表示方向。 
如果没有一条可行的路则输出-1。

Sample Input Copy

5 6
1 0 0 1 0 1
1 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 1
1 1
5 6

Sample Output Copy

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

HINT

【算法分析】 
用一个a数组来存放迷宫可走的情况,另外用一个数组b来存放哪些点走过了。每个点用两个数字来描述,一个表示行号,另一个表示列号。对于某一个点(x,y),四个可能走的方向的点描述如下表: 
         2 
1  x,y  3 
         4 
对应的位置为:(x, y-1),(x-1, y),(x, y+1),(x+1, y)。所以每个点都要试探四个方向,如果没有走过(数组b相应的点的值为0)且可以走(数组a相应点的值为1)同时不越界,就走过去,再看有没有到达终点,到了终点则输出所走的路,否则继续走下去。 
有些情况很明显是无解的,如从起点到终点的矩形中有一行或一列都是为0的,明显道路不通,对于这种情况要很快地“剪掉”多余分枝得出结论,这就是搜索里所说的“剪枝”。从起点开始往下的一层层的结点,看起来如同树枝一样,对于其中的“枯枝”——明显无用的节点可以先行“剪掉”,从而提高搜索速度。  

Source/Category