Problem F: 不容易系列之一

Memory Limit:32 MB Time Limit:1.000 S
Judge Style:Text Compare Creator:
Submit:7 Solved:4

Description

大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

Input

包含一个正整数n(1<n<=20),n表示8006的网友的人数。

Output

输出可能的错误方式的数量

Sample Input Copy

6

Sample Output Copy

265

HINT

这个数学模型是错位重排
装信封:编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法?
对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1,
Dn=(n-1)(Dn-2+Dn-1) 此处n-2、n-1为下标。
n>2
我们只需记住Dn的前几项:D1=0,D2=1,D3=2,D4=9,D5=44。我们只需要记住结论,进行计算就可以。




Source/Category